Prediction Model of Left Ventricle Myocardial Infarction Based on Echo Image Data

来源 :2015年中国生物医学工程联合学术年会 | 被引量 : 0次 | 上传用户:xindongmei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Determining ventricle tissue material properties and myocardial infarction(MI)noninvasively based on in vivo image data is of great important in clinical applications.Echo data were obtained form 10 patients.The patients were divided into Group 1(n=5,with infarct)and Group 2(n=5,without infarct).Echo-based patient-specific computational LV models were constructed to quantify LV material properties and identify predictors for presence of infarction.Systolic and diastolic material parameter values were adjusted to match echo volume data.The equivalent Youngs modulus(YM)values were obtained for each material stress-strain curve for easy comparison.LV wall thickness,volume,ejection fraction,diameter,height,material stiffness parameter values,circumferential and longitudinal curvatures,stress and strain values were collected for analysis.Logistic regression analysis was used to identify the best parameters for infract prediction.The LV stiffness in fiber direction at end-systole was the best single predictor among the 12 individual parameters with an area under the ROC of 0.9841.Computational modeling and material stiffness parameters may be used as a potential tool to suggest if a patient had infarction based on echo data.Large-scale clinical studies are needed to validate these preliminary findings.
其他文献
The photonic crystal beads(PCBs)with structural color codes attract increasing attention in the field of multiplex bioassay.However,the complicated illumination light path of microscope and the spheri
Image-based computational modeling has been used more and more for cardiovascular disease management and surgical planning in recent years.The modeling approach could perform virtual surgery with diff
本文主要提出了一种基于空间场特征的CCA算法贝叶斯概率推测的改进算法(Denoise Canonical correlation Analysis DECCA),通过对放大器采集的多导脑电信号在CCA空域投影在目标和非目标信号时空间分布场特征的改变,改进CCA算法在遇到强电磁干扰导致误判的问题,并用朴素贝叶斯的对结果进行预测.提高在复杂环境下应用脑机接口的准确性。
Nowadays,infrared neuron stimulation(INS)in most of applicationswaspreformed in thermal confinement and the confined area in laser beam would changeits volumeduring INS.For INS in cochlea,it may trans
本文中设计制作了一款新型的脑电干电极,用于实现对EEG信号的检测.相较于传统的湿电极,该新型电极在测试过程中不需要导电介质,有效降低了实验准备过程的复杂度,可以大大缩短实验准备时间.而且,其接触电阻可以和湿电极媲美,从而可实现长时间实时稳定测量EEG.利用聚吡咯石墨烯纳米复合物对电极探头进行修饰,可以有效降低电阻,提高信号的稳定性和可靠性.对干电极与头皮的接触阻抗进行了阻抗谱测试,并将自制干电极与
This paper puts forward a gas detector,which is based on spectral analysis technology,embedded technology,and Multi-spot measure technology.The gas detector reduces Random error and enhances measuring
Objective: The development of nanomedicine provides unprecedented opportunities for design and fabrication of new theranostic agents against cancer.Method: In this study,we successfully constructed a
PET影像由于自身组织分辨率较差,在脑神经系统疾病的检查中与标准脑图谱配准时,PET影像脑部特征位置点难以准确选择因而易造成较大误差.本文提出了以空间分辨率和密度分辨率均较好的CT影像为中介,通过PET-CT-标准图谱变换来实现PET脑影像与脑图谱的配准方法,弥补PET影像分辨率较差的局限性.首先利用CT影像实现脑组织自动提取、脑组织最小包围盒提取和中矢面的划定等配准预处理步骤;随后将得到的CT脑
Neurofeedback(NF)training is an operant conditioning procedure which regulates brain activity for human cognition,peak performance and health enhancement.This paper briefly introduces the new progress
构建一种RGD掺杂聚吡咯膜修饰的铟锡氧化物(PPy/RGD-ITO)微电极,验证其作为电子学检测系统和细胞生物学系统间耦合界面的适宜性.ITO微电极采用光刻技术制备.以RGD多肽作为掺杂剂,通过电化学聚合方式在ITO微电极表面沉积PPy/RGD膜制备PPy/RGD-ITO微电极.通过人肺癌细胞株A549铺展、粘附及增殖实验考察PPy/RGD膜细胞生物相容性.以PPy/RGD-ITO微电极作为电子学