论文部分内容阅读
针对基本粒子滤波算法没有融合当前时刻观测值的缺点,提出了一种卡尔曼粒子滤波算法。该算法基本思想是针对每一个粒子使用卡尔曼滤波器进行更新,在更新过程中融合最新的观测信息,提高粒子滤波器的估计精度。针对纯方位目标跟踪问题进行实验,与基本粒子滤波算法及卡尔曼滤波进行了对比。实验结果表明。卡尔曼粒子滤波算法的跟踪性能明显优于其它两种算法。