论文部分内容阅读
为提高汽轮发电机组励磁与汽门系统机端电压和功角的控制性能,提出了基于在线学习和自抗扰控制(ADRC)的神经网络逆鲁棒控制方法。首先,将神经网络逆与被控励磁汽门系统组成的复合伪线性系统等效为含有扰动的线性系统。然后,基于ADRC,设计了用于在线估计复合伪线性系统状态和扰动的ESO,解决了神经网络逆在线学习时训练样本获取的难题和基于神经网络逆系统的反馈控制器设计的难题,并在设计的伪控制量中对扰动进行补偿,基于线性系统理论证明了ESO的收敛性和闭环系统的稳定性;同时,在离线训练的基础上设计了基于在线梯度方法的神经网络逆在线学习算法,利用李雅普诺夫稳定性理论证明了神经网络逆在线学习的收敛性。最后,以典型的两区域四机系统为例进行数值仿真,与传统的AVR/PSS和基于离线训练的神经网络逆控制方法的比较结果表明所提方法明显提升了电力系统的暂态性能。