【摘 要】
:
本文结合微观弹性理论,利用Ginzburg-Landau和Cahn-Hilliard相场方程将弹性各向异性、外部应力以及沉淀相的有序化等因素都考虑在内,模拟了1180K时Ni-18at.%Al合金时效过程中相的微观结构演变,通过该计算机模拟方法我们可以实时监测任意时刻相的微观形貌与变化,同时还可以用来研究对热处理过程各种现象的变化规律,这是传统试验方法所不具备的.因此,计算机模拟方法可作为一种有效
【机 构】
:
晋西工业集团有限责任公司冲压分厂,山西太原030027
论文部分内容阅读
本文结合微观弹性理论,利用Ginzburg-Landau和Cahn-Hilliard相场方程将弹性各向异性、外部应力以及沉淀相的有序化等因素都考虑在内,模拟了1180K时Ni-18at.%Al合金时效过程中相的微观结构演变,通过该计算机模拟方法我们可以实时监测任意时刻相的微观形貌与变化,同时还可以用来研究对热处理过程各种现象的变化规律,这是传统试验方法所不具备的.因此,计算机模拟方法可作为一种有效手段来研究材料的内部微观性质以及组织变化机制,从而为材料微观结构的预测和设计提供理论依据.
其他文献
18CrNiMo7-6钢是一种高强度合金钢,此材料合金含量较高,淬透性较好,对于中小模数齿轮,心部硬度的控制是难点,本文主要针对淬火工艺、原材料、淬火介质等影响心部硬度的几个因素进行研究,通过控制材料、改进工艺等对零件的心部硬度及组织进行控制.
研究了一种新型热作模具钢5Cr8MoNi2SiV的热力学相变规律和CCT曲线,为改善该钢铸态组织的严重偏析和提高材料切削性能,分析普通"常规退火"、 "正火+球化退火"和"正火+等温球化退火"三种预处理工艺对材料组织和性能的影响.结果表明:材料经"1090℃×lh"正火+"880℃×2h+680℃×48h"等温球化预处理,能显著改善碳化物的偏析,并使硬度大大降低,改善切削性能.
对9Cr18合金触变成形制件和热轧态材料进行了不同上艺参数的热处理,探讨了其对材料显微组织和性能的影响.结果表明,热处理工艺对热轧态材料及触变成形制件有不同的作用.热轧态材料热处理,淬火后随着回火温度的上升,马氏体发生分解,硬度随之下降.触变制件在进行淬火后,出现马氏体相变,不利于提高材料的强韧性能.触变成形制件在后续直接高温保温,可以提高材料综合力学性能.这主要是由于通过再结晶过程,实现晶粒细化
智能机器人自动化焊接系统越来越多的用于批量生产中,其焊接特性与手工焊接有很大的区别,焊接电流、电压和运条方式都发生了很大的变化,原来的很多焊接经验已不适用于机器人焊接系统.为更好的发挥设备性能,针对采用30CrMnSiA高强钢的壳体类焊接件的机器人焊接,进行了大量的焊接试验,摸索出了一套成熟的焊接参数,经过试验论证MIG机器人焊接系统适用于30CrMnSiA高强钢的壳体类产品批量生产.
本文对4140圆钢调质热处理工艺进行了研究,通过试生产两种技术要求圆钢进行工艺试验,分析了冷却介质和回火温度对圆钢性质的影响,为圆钢调质热处理生产做好了工艺准备,为承揽批量件圆钢生产提供了技术保障.
ZG15Cr1Mo1V钢多用于生产电站汽轮机的阀类配件。根据工件材质和性能要求初步确定普通的正回火工艺方法,性能结果和组织均达不到要求.通过小试块试验,对比性能结果,分析组织状态.采用两次正火加回火可以显著改善组织减少原始组织残留、细化晶粒、减少偏析,有利于热处理性能提高。
利用ANSYS软件建立"变温层"模型,分析淬火剂的冷却能力,进而改善和开发淬火介质.结果表明:变温层对马氏体相变点以下的温度区域影响较大.随变温层厚度增加,相变时间延长,试样表层和心部的温差变得均匀,有利于减小残余应力.此外,变温层的存在是必然的,试样淬火的搅拌速度或介质的流速存在一个极大值umax,对应的变温层厚度存在一个极小值xmax,umax与xmax存在对应关系.
实验测量了超高强度钢G50不同组织的热物性参数与力学性能参数,测定了马氏体相变动力学参数和马氏体相变塑性系数,建立了超高强度钢G50淬火的温度-组织-应力耦合材料模型.通过反传热计算确定了浸油淬火过程中试验件的表面换热系数.使用所建立的材料模型和换热系数,模拟计算了试验件浸油淬火过程中的温度、组织和应力的演化过程,温度计算结果和实验测试结果相吻合.
本文基于金属-热-力耦合理论,建立了C型环试样淬火和深冷处理的多物理场耦合数值模型,探讨了淬火和深冷处理过程中试样冷却行为和组织转变对其应力演变和分布的影响.研究表明:淬火和深冷处理过程中,由于C型环试样不同部位的冷却行为差异,导致温度变化和组织转变呈现非同时性.淬火和深冷处理后,试样残余奥氏体的含量分别为15.5%和2%左右,与实验测试结果吻合.在淬火过程中,试样等效应力变化曲线先后出现两个峰值
为了利用数值模拟技术计算感应加热过程丝杠沟道区域的奥氏体化情况,利用Gleeble 1500D热模拟试验机,测试了55CrMo钢试样在升温速率为0.05-50K/s时的膨胀曲线,得到了55CrMo钢的奥氏体化温度与加热速率的关系.基于非等温相变的Johnson-Mehl-Avrami(JMA)方程,对55CrMo钢的奥氏体化过程进行了线性回归分析,并得到了相应的相变动力学模型.利用数值模拟技术,计