热纤梭菌与嗜热解糖梭菌共培养促进秸秆高温发酵产氢过程研究

来源 :2012年全国博士生学术论坛——发酵工程 | 被引量 : 0次 | 上传用户:ylzhou40
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  氢气是理想的清洁能源,燃烧热值高,零污染,环境友好,是一种可再生资源,对于减少化石燃料造成的环境污染具有非常重要的意义。近年来,微生物直接转化废弃物产氢得到了广泛关注,文献报道,热纤梭菌具有完整的纤维素酶系,不需任何预处理就能够直接分解木质纤维素并用于产氢过程,但是由于热纤梭菌产氢量较低而使其应用受到限制。
其他文献
丁醇(C4H10O)为含四个碳原子的饱和一元醇,可通过丙酮丁醇发酵(简称ABE发酵)制得,其不仅为重要的化工原料,亦可作为生物燃料替代日益枯竭的化石燃料。与乙醇相比,丁醇含有更多的热量,并能与汽油以任意比例混溶。此外,丁醇挥发度低,腐蚀性小,作为液体燃料更加容易控制和运输。因此,近年来对生物丁醇的研究受到人们的广泛关注。
能源短缺、环境恶化等问题,使得对可再生清洁的生物质能源的研究与开发受到人们的广泛重视。丁醇作为一种新型的生物燃料,性能优于乙醇,可与汽油任意比例混合使用,且不用改造发动机,腐蚀性小,易于运输。玉米芯是来源广泛且廉价的木质纤维可再生原料之一,因此,利用玉米芯水解液发酵制丁醇具有重要意义。
An artificial microbial community consisted of Ketogulonicigenium vulgare and Bacillus cereus has been used in industry to produce 2-keto-gulonic acid, the precursor of vitamin C.In order to investiga
秸秆等木质纤维素是地球上年产量巨大的可再生性的一种自然资源,以木质纤维素为原料生产燃料乙醇对于当前人类解决能源危机、粮食短缺、环境污染等现实问题具有极其重要的意义。在燃料乙醇生产工艺中,通过物理或化学预处理打破秸秆等木质纤维素生物抗降解屏障后,需要利用纤维素酶和半纤维素酶将原料降解成可发酵性糖,才能转化成乙醇。纤维素酶是能够降解纤维素生成葡萄糖的一类酶的总称,是一个由多种水解酶组成的复杂酶系。纤维
丙酮丁醇梭菌(Clostridium acetobutylicum)是重要的工业微生物,其在代谢过程中主要产生丙酮(Acetone)、丁醇(Butanol)和乙醇(Ethanol)三种有机溶剂,因而近年来受到广泛关注。目前,丙酮丁醇梭菌的遗传改造技术尚不全面,在基因中断方面,仅有基于二类内含子的靶向基因敲除技术(TargeTron)可以比较高效地对目的基因进行失活,但该技术并不能实现基因的完全删除
纳米银在抗菌材料、生物分子检测和催化等领域具有重要的应用价值。传统的化学合成纳米银方法涉及到毒性物质和高温条件,不符合绿色化学的原则。生物合成法被认为是简单、温和、环境友好的方法,如通过细菌、真菌、生物分子制备纳米银。然而,目前报道的大部分细菌合成速度比较低,还原1 mM的硝酸银需要24-120 h,极大的限制了其工业化生产。本课题组首次发现阳光辐射可介导解淀粉芽胞杆菌快速合成纳米银,可在80 m
Consolidated bioprocessing (CBP) is believed to be one of the preferred strategies to produce biofuels directly from cellulose, which can greatly reduce the costs.Clostridium cellulolyticum H10, a typ
Heparosan是E.coli O10∶K5∶H4(简称E.coli K5)等菌株的荚膜多糖,也称为K5抗原.对heparosan分子结构的研究表明该多糖具有与硫酸乙酰肝素和肝素类似的多糖骨架结构,因而以heparosan为生物合成前体,经脱乙酰、硫酸化修饰合成硫酸乙酰肝素进而合成安全可控的微生物源肝素开始受到关注.本实验室考察了E.coli K5合成heparosan基因簇中关键酶基因(kfi
筛选到一株能以甲醇为唯一碳源进行生长代谢并产粉红色素的兼性甲基营养菌菌株XJLM,经鉴定为甲基杆菌属,定名为Methylobacterium sp.XJLM,其休止细胞能够耐受和降解较高浓度的甲醛.分别以甲醛和甲醇为唯一碳源进行培养,并对其C1代谢中间物进行检测,结果显示该菌能通过双岐反应降解甲醛.以甲醛为唯一碳源时,该菌能降解甲醛,同时产生甲酸和甲醇,且积累大量的甲酸(该菌不能代谢甲酸),甲醛被
Brefeldin A, a macrolide lactone antibiotic, can block the secretory process in eukaryotic cells by interfering in the endoplasmic reticulum to Golgi membrane traffic, resulting in the disassembly of