【摘 要】
:
蓝相液晶因为复杂的双螺旋结构和宏观光学各向异性特点,在对其进行模拟计算时,往往需要建立液晶分子的双螺旋结构和空间三维结构,然后再利用光学计算方法来计算其光学特性。建立双螺旋结构和空间三维结构,可以采用直接建模方法或者Landau理论获得,但是这两种方法都很复杂,并且获得的液晶分子排列复杂,从而在模拟计算中需要耗费很长的时间,再考虑加电压后的结构,计算时间就更加复杂。本文中,我们考虑蓝相液晶与胆甾相
【机 构】
:
河北工业大学应用物理系,天津 300401
论文部分内容阅读
蓝相液晶因为复杂的双螺旋结构和宏观光学各向异性特点,在对其进行模拟计算时,往往需要建立液晶分子的双螺旋结构和空间三维结构,然后再利用光学计算方法来计算其光学特性。建立双螺旋结构和空间三维结构,可以采用直接建模方法或者Landau理论获得,但是这两种方法都很复杂,并且获得的液晶分子排列复杂,从而在模拟计算中需要耗费很长的时间,再考虑加电压后的结构,计算时间就更加复杂。本文中,我们考虑蓝相液晶与胆甾相液晶的相似点,提出了使用具有高预倾角度的胆甾相液晶结构来模拟蓝相液晶结构,获得了与实验结果相近的Bragg反射光谱,进一步提出了一维弹性模型来模拟蓝相液晶的光学折射率变化,在与实验结果对比的过程中,获得等效弹性常数比液晶本身的弹性常数大几倍的结果,并随着驱动电压的增大,等效弹性常数逐渐减小。我们理论分析为:蓝相液晶体系中包含液晶材料、手性材料、聚合物单体材料和聚合物网络,这个体系的整体弹性表现肯定要大于液晶材料本体的弹性,因此等效弹性常数比较大,随着驱动电压的增大,手性材料、聚合物单体和聚合物网络在弹性力矩作用下都向着电场方向旋转,从而所表现出来的对液晶的弹性作用减小,于是等效弹性常数减小。该一维弹性模型可以加入转动粘滞系数项,从而可以获得计算响应时间的性能,同样与实验结果相比较得知:液晶体系的转动粘滞系数大概是4倍的液晶本体的转动粘滞系数。在结构牢固的聚合物网络或手性的聚合物网络结构,亦或偏振紫外光处理或外加电场处理后的聚合物网络结构,响应速度要比普通聚合物网络稳定的蓝相液晶快得多,这个现象可以用锚定能效应来进行解释。
其他文献
蓝相液晶因为其具有亚毫秒的响应速度、不需要取向层、宽视角等诸多革命性优点,被誉为下一代显示技术。但是,驱动电压过高,光透过率较低是制约蓝相液晶发展与应用的两大瓶颈。本文中,我们提出了一种具有高介电绝缘层的双面共面开关蓝相液晶显示器(Double-side IPS-BPLCD)。该显示器使用高介电绝缘层代替传统的绝缘层,并且使用双面电极驱动。通过高介电常数绝缘层的引入以及参数优化,增强了液晶盒内水平
我们利用动态掩膜分步层叠曝光的光控取向技术,实现对双频液晶面内指向矢的分布控制,由此设计制备了一种基于偏振光栅结构的光开关元件.传统的二元位相光栅衍射效率的理论上限为40.5%,通过引入Pancharatnam-Berry(PB)位相并优化盒厚参数满足半波条件,圆偏振光入射可得到高达95%以上(理论值100%)衍射效率,高级衍射被完全抑制.较比传统方式制备的位相光栅体现出显著的优越性.此外,由于双
近年来,随机激光性能调控的研究越来越受到重视。随机激光性能调控已经成为随机激光基础研究和应用研究之间不可或缺的桥梁。为了发挥随机激光巨大的应用前景,人们迫切需要控制和"驯服"随机激光,而不是由它随便发射。无论从基础和应用的角度,人们都需要象研究传统激光一样,研究随机激光的各种调控机理和技术,比如说,随机激光的波长调谐、随机激光的发射方向和偏振的控制、随机激光空间相干性的控制等。随机激光是多方向性的
Conventional stereoscopic displays tend to cause eye fatigue and uncomfortableness due to the accommodation-convergence conflict.In order to realize fatigue free 3D displays,we have been researching o
新型有机液晶材料的制备离不开现代有机合成方法学的普遍应用。点击化学作为一种具有产率高,反应条件简单,多种官能团耐受性等优点的有机热点反应,被广泛应用于生物、材料及药物化学等领域。点击化学的代表性反应为一价铜催化的叠氮-炔基Husigen1,3-偶极环加成反应得到1,4-二取代的1,2,3-三唑五元杂环衍生物。
自组装超结构广泛存在于生物大分子、胶体、纳米材料和液晶等体系中。胆甾相液晶是其中的典型代表。在胆甾相液晶中,由于液晶分子本身或添加客体材料的手性作用,产生与光波长尺度相当的周期性螺旋排列,对圆偏振光具有特殊的选择反射作用,在反射式显示、可调谐滤波器、光学传感器、无镜激光等方面展现出广阔的应用前景。在液晶盒表面平行取向的条件下,胆甾相液晶的螺旋轴均匀垂直于基板排列,呈现出油珠链状的Grandjean
由于液晶相位光栅的衍射效率和偏振特性具有电场可控性,在光束转向器、三维图像显示和空间光通信等诸多领域具有广泛的应用.目前对液晶相位光栅的报道主要是研究固定周期液晶相位光栅的衍射效率,响应速度和偏振特性,而对周期可控的液晶相位光栅的特性研究非常少:Fuh等1利用传统液晶材料制备的周期可控液晶光栅结构无法满足快速响应的需求.蓝相液晶基于其纳米级周期性结构而具有亚毫秒级的响应速度而备受关注.严静等2利用
太赫兹功能材料的匮乏限制了太赫兹器件的发展.传统的ITO电极无法工作在太赫兹波段,影响了太赫兹液晶器件的实用化.本研究开发了宽带、高透过率、高电导率的掺杂二甲亚砜(DMSO)的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)透明电极,掺杂15vol%DMSO的PEDOT:PSS单层膜(52 nm)的最大电导率可达5078 S/cm,并且其透过率在1.22 THz可达到83.5%.该透
液晶作为一种光学材料,广泛应用于液晶光栅、平板显示器、空间光调制器等领域.这些液晶的应用都要求液晶材料具有高双折射率(Δn),低熔点,宽向列相范围等.通过增加分子电子线性共轭长度来提高化合物的双折射率,在苯环上引入氟(氯或甲基)取代基或增加柔性链的长度来降低分子的粘度和熔点.本课题组通过格式反应、Suzuki偶联反应、Sonogashira偶联反应等合成出末端含4个碳(带有支链)烷基的含氟三苯乙炔
利用高分子微纳结构重构的方法,对两种不同构型且自身不具备液晶相的类液晶材料(棒状:4-乙基-4-联二苯腈(2CB);弯曲型:2,5-反(4-(戊氧基)苯基)-1,3,4-恶二唑)实现了如同蓝相这种三维手性纳米结构的构筑,并利用显微织构,反射光谱以及Kossel衍射等方法对其进行了晶格结构的验证。另外,这种将类液晶构筑成蓝相结构的体系拥有电场响应特性。从而,利用高分子复杂周期结构的可构筑性以及电场响