【摘 要】
:
Overview■ Renesas expertise on Functional Safety■ MCU as SEooC● Development process● Assumption of Use● Generic HWSR for an MCU● Customer responsibility for using MCU as SEooC■ MCU Safety Lifecycle● L
【机 构】
:
瑞萨电子(中国)有限公司 上海分公司
【出 处】
:
2014汽车电子暨半导体技术创新论坛
论文部分内容阅读
Overview■ Renesas expertise on Functional Safety■ MCU as SEooC● Development process● Assumption of Use● Generic HWSR for an MCU● Customer responsibility for using MCU as SEooC■ MCU Safety Lifecycle● Life Cycle tailoring● Content of MCU work products■ Overview of Renesas Products for Functional SafetyRenesas expertise on Functional SafetyRenesas expertise on Functional Safety
其他文献
Supercapacitors (SCs) have long service lifetime, fast charge-discharge processes, green environmental protection and high energy efficiency.Due to these advantages, SCs have been widely employed in t
储能是提高电网对间歇性可再生能源发电接纳能力的有效技术,电池储能因其独特的性能成为重要的发展方向之一。文中以实验室自制的42120圆柱三元/钛酸锂电池组成储能系统,介绍了该储能系统在光伏发电系统中的运行模式,系统集成的电池控制系统保证了电池在适宜的荷电态和温度范围内工作,并提高了系统的安全性。
淘汰的车载动力电池仍有部分剩余容量可供储能系统继续使用,为了满足储能系统高容量的要求,需将淘汰的动力电池重新筛选并联成组。因此,本文以淘汰的磷酸铁锂动力电池为研究对象,将单体电池并联成组,在不同倍率下充放电循环,分别研究了各个单体电池在内阻不一致、剩余容量不一致、SOC不一致时,并联成组后的变化特性。研究结果表明:当单体电池内阻不一致时,放电过程中各支路电流不平衡,放电末期差异性最为明显,并且随着
It is well known that the electricity generated must match the load demand to ensure the power network stability.Currently, 80% of our electricity is generated from fossil fuel (coal or gas) with the
随着越来越多的可再生能源嵌入电网,可再生能源的间歇性与电网稳定性的矛盾日益凸显.目前储能技术尚不成熟,成为新能源电网系统发展的薄弱环节.开发低成本、长寿命的储能电池技术是发展可再生能源和改善电网稳定性的关键.锂离子液流电池是由中科院电工研究所独立提出并在国内最早进行研发的新型化学储能电池,它综合了锂离子电池和液流电池的特点,是一种输出功率和储能容量彼此独立、成本较低、寿命长、安全性较好的新型可充电
近年来钠离子电池以其低成本和资源丰富等[1-2]优点在大型能量存储应用方面越来越受到大家的重视.各种钠离子电池正极材料层出不穷,如MrnO2[3]、Na3V2(PO4)3/C[4]等正极材料.而对于负极材料的研究却相对较少.主要为碳材料负极和钛基负极材料,但电化学性能都存在一定的问题.Li4Ti5O12作为当今很普遍的一种锂离子电池负极材料,它的"零应变"很是受到大家的喜爱.近来发现,它不仅能用作
Over the past decades, lithium ion battery industry have been driven predominantly by the tremendous demand for electric vehicles (EVs) or hybrid electric vehicles (HEVs) [1-3].In the development of c
A two-step strategic approach was proposed to synthesize three-dimensional Co3O4 nanoarrays fabricated on the Cu substrate surface with a Ni layer as interface.Firstly, a Ni-nanoseed-layer was prepare
多级孔碳材料作为超级电容器常用电极材料备受研究者的关注.现行多级孔碳材料制备工艺复杂,并且材料的大孔结构,特别是>1μm的孔结构对超级电容性能的影响的研究不足.本文首次以生物类表面活性剂石胆酸和NH4Cl为成孔剂,制备了具有分级大孔结构的大孔泡沫碳FC,孔径为200~500nm及1~5μm,该制备方法简单、条件温和;然后采用不同量的KOH为活化剂,制备了具有微孔-介孔-大孔结构的多级孔结构的碳,这
The asymmetric YSZ hollow fibers have been prepared by a phase-inversion method, based on which, the integrated electrolyte/anode hollow fibers are fabricated via a vacuum-assisted impregnation of nic