【摘 要】
:
近些年来,柔性固态超级电容器得到了越来越多的关注,但是,电极材料性能的发展面临着很大的挑战.本实验中,以气相沉积法生长的石墨烯网状薄膜,沉积在四种不同的柔性基底上
【机 构】
:
清华大学材料科学与工程学院,100084
论文部分内容阅读
近些年来,柔性固态超级电容器得到了越来越多的关注,但是,电极材料性能的发展面临着很大的挑战.本实验中,以气相沉积法生长的石墨烯网状薄膜,沉积在四种不同的柔性基底上(磨砂布、PET、保鲜膜和滤纸),与胶体电解质组装成柔性超级电容器.性能测试可得,以磨砂布为基的超级电容器具有最高的面积比电容,可以达到8mF/cm2,质量比电容是267F/g,电极材料的厚度只有1~7nm,整个器件的厚度也<1mm.并且,1000次循环后比电容仍能保持在100%.本实验中的固态超级电容器可以任意变形,比如,以磨砂布为基的固态超级电容器可以进行弯曲和扭曲变形,保鲜膜为基的固态超级电容器可以揉团,PET为基的固态超级电容器可以呈“凸”变形,滤纸可以折叠成“飞机”“船”等.变形后电容性能不会降低,变形回复后可以恢复原始的比电容值.300次变形,面积比电容仍可保持100%.实验证明,石墨烯网状薄膜可转移到任意基底,石墨烯网状薄膜可以在高性能的柔性全固态超级电容器中得到很好的应用.
其他文献
纳米氧化石墨烯(NGO),即石墨烯的氧化衍生物,作为一种新型二维的碳纳米材料,具有超大的比表面积和优异的光热效果等性质,已成为纳米医学领域中备受关注的研究热点.NGO含有大
大碳笼富勒烯因其产率低以及存在多种异构体所以目前研究极少.本工作中,我们首先通过传统的电弧放电法合成了一系列富勒烯混合物,并通过高效液相色谱进行分离,得到了低产率
干旱、盐碱、低温等非生物逆境胁迫严重影响植物的生长发育,极端恶劣条件下甚至导致植株死亡,是农业生产中作物减产的重要因素。高等植物在长期进化过程中为了抵抗这些逆境形成
本文对过渡金属配合物催化活化生成N-X,C-X键的反应进行了理论研究(X=C或者H)。主要包括双核双氮过渡金属配合物N-N键活化规律的理论研究、过渡金属钴配合物催化Suzuki-Miyaura
通过衍生化反应可以实现对富勒烯碳笼进行改造得到碳笼缩小的非经典富勒烯[1,2].本工作中,我们通过将大碳笼富勒烯C100和VCl4,SbCl5进行氯化反应,结合同步辐射单晶测试并
通过水热原位聚合、化学活化的方法制备了具有新颖结构的基于石墨烯的层状多孔复合碳材料。石墨烯的上下表面均负载着一层均匀的多孔碳,使材料同时具有高导电性、高比表面
石墨烯纤维是一种新型的碳基纤维材料,相对于传统的碳纤维,碳纳米管纤维,密度更小,质量更轻,更易于功能化,制造成本更低[1]。由于具有优异的化学、物理、机械性能,在新材料、纺
二维过渡金属硫族化合物是一个蕴含着丰富物理内涵的新型材料家族.这类材料的能带结构与物理性质呈现出显著的层数效应,而层数对其化学稳定性及化学反应活性的影响尚无系统研
荧光化学传感器(Fluorescence Chemical Sensor)是基于传感器分子(Sensor/Indicator)与目标分子作用引起传感器分子产生物理化学变化而达到检测目的一种方法。该方法具有高灵