【摘 要】
:
海面风浪是海洋环境噪声在中高频段的主要噪声源,风关噪声是由海面分布足够大区域内噪声源共同作用影响,噪声谱级与风速具有强相关性.Cato以距离噪声测量点较远距离观测点观
【机 构】
:
中国科学院声学研究所声场声信息国家重点实验室,北京100190
【出 处】
:
中国声学学会2017年全国声学学术会议
论文部分内容阅读
海面风浪是海洋环境噪声在中高频段的主要噪声源,风关噪声是由海面分布足够大区域内噪声源共同作用影响,噪声谱级与风速具有强相关性.Cato以距离噪声测量点较远距离观测点观测到的风速数据作为区域风速,分析发现澳大利亚浅海环境噪声与本地风速相关性好于与区域风速的相关.王璟琰将区域噪声源强度函数平均值作为"平均风速"建模分析台风激励水下声场特性,实验与理论吻合度高.本文基于一次南海深海噪声观测数据和同步的区域海面气象数据,将区域风速均值作为区域风速值,通过分析噪声与本地风速和区域风速的不同相关特性,研究风关噪声源作用范围.
其他文献
1908年Worthington首次提到了雨滴落至水面会在水中辐射声信号的现象.Franz首次进行了单个水滴自空气中降落至水面的实验,发现仅有水滴冲击水面的初始冲击声和水滴激起的气泡
在物质含量复杂的海水中,光波和电磁波传播时的衰减非常大,其传播距离远不能满足海洋生产活动的需求.迄今为止,声波仍是在海洋中唯一有效的信号传播途径.但海洋环境复杂多变,
模基信号处理是将物理现象与测量过程(包括噪声)的数学模型结合进处理器中来提取有用信息的技术.模基信号处理并不是刚刚出现的新概念.参数类方法作为信号处理领域中的现代方
水下目标声散射特性研究是主动声纳赖以工作的基础,也是主动探测产生新思想、新原理、新方法的基础.利用声散射可以对水下潜体进行目标探测与识别,因为ANSYS在工程中有着广泛
可预报性研究是当前大气-海洋科学研究中的前沿热点领域,地球的大气和海洋是非常复杂的混沌系统,一方面现有模型难以准确模拟其运动发展过程,模式误差不可避免;另一方面,受限
海洋水声环境参数反演,有时也称为匹配场反演,其目的是通过水听器基阵采集的数据推演水声信道环境参数.匹配场反演是一个全局优化问题,存在许多局部最优解.传统的遍历法在反
近年来国内水声传播研究领域正在向深海拓展,针对三维复杂海洋环境下的声传播计算需求日益增长,目前常用的射线模型、抛物方程模型等能够解决该类建模与计算需求,但在复杂环
在水声信号处理领域研究时,通常需要获得海洋水声环境参数,其中声速剖面是重要的海洋水声环境参数之一,它对水声传播有着极其重要的影响.目前声速剖面获取有两种途径:现场观
当声源位于远场时,在一定孔径范围内的水平阵列各基元接收声信号具有良好的相关性,通过阵列波束形成处理可以获得空间增益,从而提高阵列探测性能.与水平阵列的布阵方式不同,
利用环境噪声实现目标或散射体的探测在国内外以早有研究.1992年Buckingham等人指出海洋环境噪声类似一种声日光(Acoustic daylight),并设计了声日光成像系统,成功探测到了36