【摘 要】
:
铊(Tl)是典型的剧毒重金属元素之一,是美国环境保护署(EPA)优先控制的重金属之一,也是我国兼顾防治的重金属之一.我国(含)铊矿产资源丰富,其开发利用引发了严重的Tl污染.但由于多年来我国对铊污染重金属在环境界面的迁移转化行为是了解其环境地球化学行为的重要课题之一.锰氧化物是自然界中存在的催化能力最强的金属氧化物.软锰矿(β-MnO2)是最稳定的锰氧化物之一.本文主要通过放射性同位素标记的方法研
【机 构】
:
广州大学珠三角水质安全与保护创新中心暨省部教育部重点实验室和环境科学与工程学院,广州 广东省环境科
【出 处】
:
2016年全国矿物科学与工程学术研讨会
论文部分内容阅读
铊(Tl)是典型的剧毒重金属元素之一,是美国环境保护署(EPA)优先控制的重金属之一,也是我国兼顾防治的重金属之一.我国(含)铊矿产资源丰富,其开发利用引发了严重的Tl污染.但由于多年来我国对铊污染重金属在环境界面的迁移转化行为是了解其环境地球化学行为的重要课题之一.锰氧化物是自然界中存在的催化能力最强的金属氧化物.软锰矿(β-MnO2)是最稳定的锰氧化物之一.本文主要通过放射性同位素标记的方法研究了微量重金属铊在软锰矿表面的吸附行为.
研究结果表明,在所研究的pH (pH=4~8)范围内,软锰矿对Tl+均有一定的吸附作用,单位吸附量为0.36~1.36nmol/g。且吸附作用随pH的变化较为显著,如pH 8时的吸附量大约是pH 4.5时的四倍)。软锰矿对Tl(Ⅰ)的表观吸附平衡常数也随着pH的升高而增大,在较窄的范围内(pH 6~7)急剧增大,吸附曲线呈S形分布。这是由于Tl+在所研究pH范围内,主要以Tl+离子的形式存在于溶液中。软锰矿的等电点为pH=5.8左右,其表面在pH<5.8时(pH 4~5)带正电,与Tl+离子之间存在着较强的静电斥力,因而对Tl+的作用很小,而在pH>5.8 (pH 6~8)时带负电,与Tl+离子之间存在的静电引力,也可使表面对Tl+的吸附作用迅速增大。此外,软锰矿对Tl+的吸附除了对Tl+离子的表面静电作用和内层络合作用外,可能还存在着表面氧化机制。大量的研究表明,氧化锰能作为许多氧化还原反应的电子接受体,在很大的pH范围内其表面对Tl+离子的吸附易于受氧化还原作用的影响。在本研究中,可能正是由于Tl+离子在锰氧化物表面形成了三价铊离子,水解作用较为强烈,使得矿物表面对Tl+的吸附对体系pH值的依赖较为强烈。由此可推知,软锰矿表面对Tl+的吸附作用是内层络合作用的专性吸附、静电引力作用的非专性吸附和表面氧化作用的共同结果。
其他文献
KSbO3-type modeling frameworks have been widely applied for the design of functional materials, but very little is known about their structural stability with the change of the temperature and/or pres
苯酚的毒性强,应用广泛,故需要重视其去除技术的研究.近年来发展起来的非均相光催化Fenton氧化技术,利用铁改性蒙脱石材料作为非均相催化剂,该工艺具有高效快捷、催化剂又易分离等优点.以往研究表明,紫外光(UV)显著促进非均相Fenton反应速率,但UV高耗能,限制了该技术的广泛应用.可见光耗能小,且可以利用太阳能,因而具有广泛的应用前景.因此,本研究将可见光引入Fenton反应系统,以考查可见光对
挥发性有机污染物(VOCs)造成的环境问题对人类的稳定发展和健康带来严重的威胁,环境污染的控制和治理成为人类面临的重大问题.以半导体为催化剂的光催化反应技术引起了人们的极大兴趣,而Bi2WO6作为一种可见光诱导的新型催化剂,其禁带宽度较窄,有良好的可见光吸收性能,无毒、无二次污染、降解效率高等一系列优点而得到关注,广泛应用于光催化领域中.然而,Bi2WO6的颗粒粒径小且容易团聚,因此许多研究将其负
铁改性蒙脱石(Fe-Mt)较之蒙脱石(Mt),在催化增强界面Fe(Ⅱ)还原性能方面表现出优越的性能。当溶液pH=6.5~6.7时,Fe(Ⅱ)/Fe-Mt系统对邻硝基苯酚的还原转化速率就很快,差不多1h内就可以实现完全转化,而Fe(Ⅱ)/Mt系统的转化率仅达到50%左右。后者若要达到100%,溶液pH值需要升高至7.2以上。至于铝改性蒙脱石(Al-Mt),其催化性能与材料制备的煅烧温度密切相关。随着
混层六方水钠锰矿是土壤中普遍存在的一种氧化锰矿物,亦是大洋锰结核和沉积物的重要组成部分.具有颗粒细小、结构缺陷多、电荷零点(PZC)低(1.S-2.S)、负电荷量高、表面反应活性强等特性,对污染物和营养元素等的环境地球化学行为具有重要作用.天然水钠锰矿中常富集多种金属离子(Fe3+、Co2+、Ni2+等),它们的地球化学行为与氧化锰矿物紧密相关(Burn et al.,1993;Feng et a
饮用水中的氟污染物被认为是目前威胁人类健康的主要问题之一[1].根据世界卫生组织(WHO)规定,安全饮用水中的氟含量不能超过1.5mg/L[2].全世界有超过35个国家,超过2亿人口正面临饮水型氟中毒的威胁[3].氟中毒在中国也是一种流行严重的地方病,在四种主要的地方病中,地氟病分布最广,危害最大.羟基磷灰石(HAP)在自然界中广泛分布,相比于其他吸附剂还有吸附量大,吸附效果好,环境友好等特点。前
本研究采用海藻酸钠(SA)为固定化载体包埋固定活体耐辐射奇球菌(Deinococcus radiodurans)形成固定化颗粒,探讨了其对铀的吸附性能,采用SEM、EDS、FT-IR、XRD等测试手段,进一步分析了该颗粒对UO22+的生物矿化行为.结果表明:固定化颗粒对铀具有良好的吸附性能,在初始铀浓度为50mg/L,溶液pH=3.5,投加量为25g/L时,吸附率达95%以上,最大吸附量达103.
Microbe-mineral interaction is vital to mineral dissolution and transformation that are involved typically in bioleaching of valued metals from low grade ores, and formation of acid mine drainages, on
660公里地震波不连续界面作为上下地幔的分界面,主要是由后尖晶石相变造成的(Ito and Takahashi,1989;Irifune et al.,1998),即林伍德石分解生成布里奇石和铁方镁石.由于该相变的克拉珀珑斜率为负值,所以会对地幔对流产生阻碍作用,从而阻碍了上下地幔的物质交换,例如俯冲板块到达660公里界面会被阻滞.对于后尖晶石的相变大都是在大压机(multi-anvil pres
水钠锰矿是一种广泛存在于地质环境中的含水层状锰氧化物.一般认为,环境中水钠锰矿形成与微生物活动密切相关.水钠锰矿能够吸附固定重金属,以Cu2+为例,Pe(n)a曾提出水钠锰矿与铜的结合方式有三种:吸附于阳离子空位;进入锰氧八面体层;吸附于侧边缘表面.本研究利用Pseudomonas putida MnB1氧化Mn2+形成水钠锰矿,重点探讨了Cu2+在不同阶段进入水钠锰矿结构时的赋存状态及其矿物本身