Quantum superintegrable nonlinear oscillators and curved Kepler-Coulomb Hamiltonians

来源 :The XXIX International Colloquium on Group-Theoretical Metho | 被引量 : 0次 | 上传用户:cdna3
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Bertrands theorem asserts that any spherically symmetric natural Hamiltonian system in R3 that has a stable circular trajectory and all whose bounded trajectories are closed is either a harmonic oscillator or a Kepler system.This statement finds a natural extension through the definition of Bertrand spacetime introduced by Perlick [1]; this is a spherically symmetric and static spacetime whose timelike geodesics satisfy properties analogous to those of the trajectories of the harmonic oscillator or Kepler systems.Furthermore,if one writes the Lorentzian metric as where g is a Riemannian metric on a 3-manifold,the timelike geodesics in spacetime are related to the trajectories of the classical Hamiltonian system.Perlicks classification of Bertrand spacetimes consists of two multi-parametric families that correspond to either an oscillator or a Kepler system on a curved manifold [2] and,moreover,they are superintegrable.The corresponding quantum N-dimensional Hamiltonians are constructed by applying two different but "gauge-equivalent" procedures: either through the "direct" Schroedinger quantization or by means of the Laplace-Beltrami one (with a scalar curvature term!).Several properties of the resulting quantum superintegrable Bertrand Hamiltonians [3] are also analyzed.
其他文献
  The young expanding Universe,at its first moments,went through a series of transitions which shaped its present structure.Our understanding of these phases
会议
如今,我国正在大力实施素质教育,旨在提高中学生各方面的能力,努力使学生成为一个德智体美劳全面发展的五好学生。而在学习方面,素质教育更加重视的是中学生的学习过程和学习
会议
马蹄莲(Zantedeschia aethiopica)属天南星科,又名水芋。素洁的马蹄莲花在国际花卉市场上已成为传统珍贵的切花品种之一。马蹄莲的繁殖一般采用播种或分株。由于前者成熟果
会议
会议
紫叶小檗是日本小檗的变种。落叶灌木,高可达2米。小枝繁茂,紫红色。刺细小,红褐色。叶丛生,经阳光照射后,嫩叶鲜红色、老叶紫红色。浆果椭圆形,长约1厘米,熟时亮红色,冬季
会议
会议
会议