微米木纤维形成高强度人造板-MFB的理论

来源 :中国林学会木材科学分会第十次学术研讨会 | 被引量 : 0次 | 上传用户:loadway
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文采用人造板微观力学和木材细胞学理论,提出了一种利用重组微米木纤维技术形成超高强度人造板(简称:微纤板,英文缩写:MFB)的细胞裂解理论和强度参数预测方法,使纤维的排列完全满足超高强度MFB要求.从微观入手,讨论木材纤维宏观状态的性能参数.分析MFB纤维形成时细胞直径的确定方法,定量地求出细胞裂解的厚度,MFB是一种新型的利用微米加工技术生产的人造板材,它没有采用高耗能的热磨工艺.它是利用微米纤维形式制成的一种最近于木材的新型人造板,这种新型MFB成果的关键是利用细胞的合理裂解方法.本文给出了实验室样品的研究成果,采用MFB实验室样品,压出的MFB的弹性模量可以达到5171MPa、握钉力可以达到1933N.预测了MFB的应用前景预测,指出了MFB产品的优良性能和MFB的主要用途.用微观力学的方法和数学工具分析人造板力学,为新板种的创新提出一种新的途径.应用本文的理论,将单丝纤维直接变成纤维板强度构成的主体,通过改变木材细胞剖分的结构方式来剔除缺陷和纤维纯化,在这样的条件下形成MFB加工的形成机理.通过木材细胞的胞管组成结构变化,解释使人造板强度显著提高的原因.MFB具有木本色、美感、保温、绿色消费、寿命高、没有节子一类缺陷、防止变形方面等方面的用途和优势.实验提出了新的人造板板种MFB,为人造板工业的基础理论研究做出了贡献。
其他文献
以微观特征为基础,以宏观特征为补充验证,采用徒手切片法对一桩刑侦案件涉案木质器械残留木屑进行了木材鉴定,结果判定为广泛分布于安徽各地的蝶形花科(Papilionaceae)黄檀属(DalbergiaL.F.)的黄檀(D.hupeanaHance),俗名不知春,并从理论上系统介绍了木材鉴定在刑侦案件中的应用方法、步骤及注意事项。
介绍了世界能源结构的现状及发展趋势,指出了能源消耗与环境、人类发展之间的矛盾.在概括目前人类缓解这一矛盾的主要措施时,提及了形成能源现状的某些因素.提出了解决上述矛盾的新方法--构建全球能量平衡体系,并建立了该平衡体系的模型,分析了其优缺点和可行性.简要介绍了目前生物质能的利用状况,给出了该平衡体系的关键环节--仿生型能量转换装置的概念,并进行了该装置与传统热机的优缺点对比.最后,简单分析了构建全
重点研究了镍粉与木材纤维的混合比例、镍粉在板材中的复合位置以及是否在混合纤维中施加异氰酸酯胶对木材纤维/镍粉复合中密度纤维板物理力学性能和电磁屏蔽效能的影响.结果表明,镍粉的添加比例对复合中密度纤维板的力学性能影响显著,在木材纤维/镍粉混合原料中施加一定量的异氰酸酯胶,可显著改善复合中密度纤维板的胶合性能,其胶合强度可以达到国家标准的要求.镍粉的添加比例对复合中密度纤维板的电磁屏蔽效能影响显著,镍
本研究采用直接加压的方式将苯乙烯(St)/甲基丙烯酸甲酯(MMA)/醋酸乙烯酯(VAc)三利混合树脂液浸注杨木单板,并利用正交试验重点探讨了压力和保压时间两因素对单体留存率的影响,确定了强化杨木单板的最佳浸注工艺为:压力Y3,保压时间Sb2.在此基础上利用方差分析得出了压力单因素对单体留存率的影响高度显著,且单体留存率对压力呈线性正相关规律,回归方程为:(y)=0.803+1.22x。
本文采用超临界CO2流体对木材-SiO2醇凝胶复合材的干燥工艺进行了相关试验和分析研究,结果表明:由于受到木材的包围,木材-SiO2醇凝胶复合材的超临界干燥工艺条件最终确定为动态和静态干燥温度50℃,动态和静态压力为25Mpa,动态干燥时间为180min.动态干燥时间为60min.经扫描电镜观察木材-SiO2气凝胶在微观结构上有良好的网络结构,SiO2气凝胶与木材有良好的结合并保持木材的空隙结构.
本文旨在采用差示扫描量热法(DifferentialScanningCalormetry,简称DSC)揭示水性高分子异氰酸酯(API)胶粘剂与竹材间的固化反应,从而推动API胶粘剂在木材行业中的推广使用.在采用DSC研究API胶粘剂固化反应时,针对API胶粘剂的特殊性质,改变传统制样的方法,取而代之采用改变参比物的方法.差示扫描量热法(DSC)的研究结果表明:API胶粘剂在与竹材胶接时,竹材中的-
本文对SiO2溶胶溶液半限注法浸渍处理紫椴和西南桤木的工艺进行了试验和相关分析研究,得出以下结论:SiO2溶胶对木材的渗透,应主要考虑压力和加压时间以及树种的影响,考虑木材的变异性所造成的实验数据的波动,确定SiO2溶胶的浸渍工艺条件为压力0.8Mpa,压力时间30min,后真空度为0.090Mpa,保持10min为木材-SiO2气凝胶复合材注入工艺条件.通过X-射线能谱图分析,在木材细胞壁的位置
纳米复合材料的优异性能主要取决纳米颗粒的分散状态;但纳米粒子极易团聚,导致粉体性能劣化.通过对纳米微粒的表面修饰和改性,控制其大小、形态,提高其在复合体系中的均匀分散能力;使纳米材料分散化、均匀化和稳定化.纳米材料分散通常采用高速剪切分散或超声振荡分散方法;且主要靠改性剂在纳米粒子表面上吸附、进行化学反应、包覆和成膜实现改性.可用俄歇电子能谱(AES)、激光拉曼光谱、红外光谱和扫描探针显微技术等对
无机气凝胶与木材复合可以体现纳米气凝胶和木材的双重优点,用溶胶-凝胶法和超临界干燥工艺制备木材-SiO2气凝胶纳米复合材是可以实现的.本文以正硅酸乙酯(TEOS)原料,HCl/HF混合酸为水解催化剂,研究了应用于木材功能性改良的SiO2凝胶的制备工艺条件.所配制的3种反应溶液的TEOS/EtOH/H2O比例分别为FU1=1.00:15.35:7.45,FU2=1.00:5.43:10.10,FU3
为弄清木材/二氧化硅复合材料的结构特性,通过固体膨胀率与增重率的关系、吸湿处理、XRD、SEM及EDAX分析该复合材料的微观构造,通过应力松驰分析木材与二氧化硅的结合方式.结果如下:(1)木材/二氧化硅复合材料的增重率与含水率成正相关.固体膨胀率与增重率成正相关.(2)尺寸变化率随着增重率的增加而减小.(3)SEM、EDAX及XRD分析表明,二氧化硅凝胶存在于木材细胞壁中.(4)应力松驰分析表明,