【摘 要】
:
多数碾压混凝土大坝的一个共同设计特点是具有内部排水系统。这个系统基本上由一个或多个排水廊道组成,位于大坝的上游面附近,其间配有竖直排水孔。通常从坝基到坝项布满这种竖直排水孔,作为大坝内部一个完整的排水系统,此系统能排干渗入大坝或大坝浇筑连接缝的水。竖直排水孔的主要目的是减低大坝浇筑点的浮托力,其二可以减少水渗到下游面产生不良效果的可能性。通常的做法是在竖直位置钻内部排水孔。由于排水孔的方位,排水孔
【机 构】
:
SNC-Lavalin Inc,455 Rene-Levesque Blvd.West,Montreal,Canada H2Z 1Z3 1-514-876-9273
论文部分内容阅读
多数碾压混凝土大坝的一个共同设计特点是具有内部排水系统。这个系统基本上由一个或多个排水廊道组成,位于大坝的上游面附近,其间配有竖直排水孔。通常从坝基到坝项布满这种竖直排水孔,作为大坝内部一个完整的排水系统,此系统能排干渗入大坝或大坝浇筑连接缝的水。竖直排水孔的主要目的是减低大坝浇筑点的浮托力,其二可以减少水渗到下游面产生不良效果的可能性。
通常的做法是在竖直位置钻内部排水孔。由于排水孔的方位,排水孔只能通过RCC大坝的浇筑连接缝。所以应当考虑沿排水管多种倾斜方向钻孔。倾斜排水孔通过竖直坝段连接缝也能通过坝段内部有可能继续扩大的裂缝,因此更加有益于增强其作用。这将是改进RCC大坝渗出控制的一个实际而又经济的方法,也将对大坝的整体性能有促进作用。该方案将被用于目前为Ban Chat HPP开始施工的RCC大坝的具体设计中。
其他文献
由于Yeywa HPP的规模和重要性,还由于其是缅甸第一座RCC大坝,并将在混凝土中使用原先根本没有用过的天然火山灰,将开展一系列的拌和物实验项目。另外,在坝体RCC浇筑开始以前完成了三个全面实验。拌和物实验项目分成两个阶段。第一阶段的目标评定各种粘性材料的性能,第二阶段的目标完成RCC设计和混凝土水准测量,选定拌和物。原来计划开展两个全面实验,第一个实验向业主(DHP)说明Yeywa的建议方法论
黄花寨RCC拱坝位于中国贵州,坝高110m。该坝的设计有如下特点:1)通过先进的地勘手段选择了适应地形地质条件的坝轴线;2是第一座超100m采用外掺MgO碾压混凝土筑坝技术的拱坝,在材料质量控制及混凝土配合比设计上具有借鉴意义;3大坝体形通过拱坝优化的方法确定,使得在应力分布合理、坝肩稳定的条件下减小了大坝体积,节省了投资;4根据仿真分析的结果提出简单合理的分缝及温控措施,有利于大坝快速浇筑碾压,
新疆某水利枢纽由主坝(碾压砼重力坝)、副坝(1和2粘土心墙坝)、泄水建筑物(表孔、中孔、底孔)、发电引水建筑物(右片引水式地面厂房:进水塔、1条高压管道、岔管)、厂房组成。工程的主要特点和技术难点有:(1)坝址区气候条件十分恶劣。夏季酷热、冬季严寒,年温差(最高月与最低月平均气温差67.5℃,极端89.9℃)与昼夜温差(平均12.8~16.2℃)极大;蒸发强烈,多年平均蒸发量为降水量的10倍之多。
越南Son La水电站工程目前正处于建设中。该坝将是越南最大的混凝土重力坝,其设计依据两种规范(越南/苏联和国际规范)。由于越南北部电力需求的增长,及为更好地控制Da河突发事件引发洪水的要求越来越迫切,使得施工时间紧张。碾压混凝土配合比的设计已成为一系列配合比试验及初步的原级配试验的课题。论文阐述了配合比试验和初步的原级配试验,并提供了其结果。也包括了建筑材料的选择。
蒙古taishir水电站工程(HPP),包括52m高的RCC大坝,目前正在建设中。HPP的目的是提供一个再生能源,以减少目前热电厂能源供输的高成本。大坝位于距首都乌兰巴托1000km远的偏远地区,那里气温范围是-50C到+40C,具有频繁的冷冻和解冻循环。由于这些条件,为了减小温度裂缝设计者AMEC/SMEC决定尽可能保持低水泥用量。设计包括一个不透水的上游面PVC土工膜护面,其能保护大坝免受极低
取得社会及经济的发展和可持续的经济增长是21世纪初巴基斯坦面临的最严峻的挑战。对于水和电来说,这种挑战更是意义深远,因为二者均是国家经济可持续发展的基本元素。全国80%的灌溉用水和水利发电来自Indus河网。巴基斯坦的经济依赖于IRS。如果没有大坝IRS则没有足够的水源,因为六月到九月间的70到90天内80%的水流经IRS。目前,巴基斯坦有71座大坝,但均非碾压混凝土大坝(RCC)。经过可行性研究
Nam Theun 1(NTl)水电项目位于老挝的Nam Kading河上,距湄公河交汇处33km的上游。这个总装机474 MW工程的主要用途是发电。所发电大部分将出口到泰国。该工程的主要特点是包括一座约180m高的拱坝,坝顶长762m,厚8m,坝基厚100m。大坝位于以砂岩和泥岩为主分层交错的地质基础之上。大坝将由2.3百万m~3的碾压混凝土筑成,形成一个满库容时水域面积达112 km~2的水库
本文概括介绍了西班牙碾压混凝土大坝的基本特性,类型,设计和施工等主要方面一些基本情况,和拌和物的一些特性。
滨赫蒂赫大坝(H=543米,L=571米)位于滨赫蒂赫省(越南)。该坝是多用途开发的主体结构(主要是防洪,灌溉和水力发电)。原本是作为传统的混凝土重力坝而设计的,但2003年改为碾压混凝土坝做出部分改变,允许当地承包商在相对较小的水坝上实验。另外越南没有有些已在国外使用的技术。因为大坝建设相对复杂,不同施工阶段中又有几个裂缝,这样不利于碾压混凝土浇筑,所以有必要重新设计。本文介绍了大坝设计和施工期
本文介绍了中国MgO微膨胀混凝土筑坝技术现状及该技术在中国的应用历程,并列举了使用该技术已建和在建大坝的情况。结合MgO混凝土的变形性能特点及数学模型,提出了外掺MgO混凝土坝的全坝仿真分析办法及大坝防裂方案,并以鱼简河拱坝为例说明了防裂方案的确定过程。本文主要得出以下结论:1)混凝土外掺MgO后具有的微膨胀性对补偿温降收缩引起的拉应力有利。在重力坝强约束区和拱坝中应用,可以部分取代温控措施达到防