论文部分内容阅读
In this paper,the (3+1)-dimensional nonlinear evolution equation:wt=2(wxx-2w3)x-3-4((θ)-1xwyy-2w(θ)-1xwy-6wwy)-3-4 (θ)-1xwzz-1-4wz-1-2wy generated by the Jaulent-Miodek hierarchy,is investigated by the bifurcation theory of dynamical systems.Focusing on the problems,the research are as follows:(1) By using the traveling wave transformation,the (3+1)-dimensional nonlinear model generated by the Jaulent-Miodek hierarchy is changed to a system of ordinary differential systems.