一种简单、绿色的光化学氧化生物乙醇制备2,3-丁二醇的方法

来源 :第十四届全国太阳能光化学与光催化学术会议 | 被引量 : 0次 | 上传用户:tatimess
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  2,3-丁二醇(2,3-butanediol)是一种重要的化工原料和液体燃料,被广泛应用于化工、食品、医药、燃料及航空航天等多个领域,其脱水产物甲乙酮可作树脂、油漆等的溶剂;酯化后的脱水产物1,3-丁二烯可用于合成橡胶、聚酯和聚亚胺酯;热值较高(27,200kJ/kg)可作为燃料添加剂;与甲乙酮脱氢形成辛烷异构体可生产高级航空用油;2,3-丁二醇还可制备油墨、香水、熏蒸剂、增湿剂、软化剂、增塑剂、炸药及药物手性载体等[1-3]。目前,生产2,3-丁二醇的方法主要有化学法和生物转化法。化学法生产2,3-丁二醇主要通过石油裂解产生的四碳类碳氢化合物在高温、高压下水解获得。该方法难度大,生产成本高,过程繁琐,不易操作,所以一直很难实现大规模工业化生产,从而也限制了2,3-丁二醇用途的充分开发[4]。目前,生物转化法生产2,3-丁二醇大多数用葡萄糖作为碳源,而葡萄糖的价格较高,且存在与人争粮、与粮争地的问题[5]。此外,由于2,3-丁二醇具有较强的亲水性和较高的沸点,且发酵液成分复杂,因而该产品下游分离比较困难。原料成本高、工艺流程复杂、产品分离困难已经成为2,3-丁二醇大规模工业化生产的瓶颈。因而迫切需要寻找一种新的方法,利用廉价的原料,高效、简单快速的合成2,3-丁二醇。随着世界人口的持续增长,化石能源的匮乏日益严重。生物乙醇,一种可再生资源,利用其替代化石燃料作为新型的能源已引起广泛的关注。目前,生物乙醇的转化主要包括重整制氢和将其转化为高附加值的化学品[6-7]等。光化学/光催化是一种新兴、高效、节能的绿色技术,尤其是光化学/光催化有机合成,由于其操作条件温和,通常在常温、常压进行,操作简单,不会产生二次污染而备受人们的青睐。在该体系中,我们利用绿色的过氧化氢作为氧化剂,光照生物乙醇脱氢偶联制得高附加值的化学品2,3-丁二醇,在优化的反应条件下, 2,3-丁二醇的选择性可达到90%。该反应工艺简单、环境友好,无二次污染、成本低廉、而且产物易分离,开辟了一条新的绿色的生物乙醇的转化利用方式。
其他文献
Herein,we report,for the first time,the successful attempt at the fabrication of Ag/AgVO3/RGO ternary plasmonic photocatalyst through a facile one-step in-suit hydrothermal method,during which the cry
由于良好的可见光响应的光催化活性,铋基半导体光催化材料的研究一直备受关注。然而,从实际应用角度出发,这类材料的光催化活性仍有待提高。近几年来,我们实验室一方面在通过调控铋基材料的组成、结晶相、高能活性晶面及形貌等参数来提高材料的光催化活性。另一方面,发展了一些新策略来增强单一铋系材料的光催化活性和选择性,例如,我们利用热液刻蚀、同步生长技术,设计合成了p-n 型核壳结构的BiVO4@Bi2O3,利
云南一直处于全国禁毒斗争的最前沿和主战场。经过近20 年的发展,冰毒已经取代海洛因,成为目前我国危害最大的合成毒品,是新的“毒品之王”。而公安部门对缴获毒品的储存成本以及安全管理等带来的问题也越为凸显。毒品销毁方法一般采用焚烧法,而液态冰毒,无法直接焚烧,采用填埋和水淹方法,对地下水环境污染大,不能回收利用,资源浪费大。一旦销毁不当,不但会对环境造成严重污染,更重要的是危及生命。对于如何更好地处理
Hydrotalcite-supported gold nanoparticles are studied as photocatalysts for the aerobic oxidation of benzyl alcohol and its derivatives without additional base under irradiation by visible light.The e
近年来,溴氧化铋材料因具有较好的载流子迁移效率和较低的光生电子-空穴复合几率吸引了很多研究者的目光。另一方面,钼酸铋作为一种n 型半导体材料,具有比较好的光催化活性。鉴于溴氧化铋与钼酸铋之间价带导带位置匹配,有利于p-n 型异质结的形成,本研究制备了溴氧化铋与钼酸铋复合材料,以获得性能更为突出的p-n 型异质结光催化剂。本文采用两步法合成了片状的BiOBr-Bi2MoO6复合光催化剂,采用X射线衍
随着氰化物的应用不断增多,产生的大量含氰废水对环境会造成很大的污染,对人类的健康,动植物的生命及生态环境构成了严重的威胁[1-3].利用太阳光,采用半导体材料催化氧化污染物进行水体污染治理,逐渐成为环境化学的研究热点.CeO2光吸收阐值约为420nm,高于目前最常用的TiO2(388nm),是一种潜在的新型高效光催化剂.本文结合异质结和新颖纳微结构对提高光催化性能的优势,采用较为温和且具有普遍适用
由于其优异的光催化活性,TiO2已经被广泛地应用于环境修复、光解水制氢、太阳能电池和锂离子电池等领域1.然而在应用过程中由于光生载流子能够快速在TiO2颗粒上复合,使得TiO2的应用受到极大的限制.采用简单的光电化学的方法可以有效地解决这个难题.因为外部施加的电势偏压能够及时地将光生电子导向外部电路,然后再导到对电极上,使得光生载流子的复合可以得到有效地抑制,从而延长光生载流子的寿命,最终提高光催
TiO2作为光催化剂一直受到人们关注。[1-4]与其他晶相相比,人们对TiO2(B)的关注较少。本工作采用无氟溶剂热结合高温煅烧手段制备了锐钛矿TiO2/TiO2(B)纳米带异质结光催化剂。[5] 结构研究表明,TiO2(B)向锐钛矿的拓扑相变过程不仅保证了锐钛矿TiO2与TiO2(B)两相之间的连续界面接触,同时使得锐钛矿TiO2的高能(001)晶面暴露在外。光催化降解乙醛的测试表明锐钛矿TiO
近年来,一种新型的无金属半导体光催化剂——石墨相氮化碳(g-C3N4),因具有环境友好、性质稳定、价格便宜、合成工艺简单及优良的光催化活性等优点而引起了越来越多人的关注[1]。前期研究成果表明,通过改变合成条件或方法都可以很好地对g-C3N4 的性能进行改良。这些成功的例子包括:使用不同类型前驱体、变换热聚合的温度和时间、离子掺杂、模板法合成介孔g-C3N4 及构成复合异质结等方法。
以碱式水热法制得的一维结构的钛酸和三聚氰胺为原料,进而采用原位复合法制备了g-C3N4/TiO2 异质结。采用X-射线粉末衍射、透射电子显微镜、X-射线光电子能谱等技术对材料的结构、形貌及组成进行表征。以次甲基蓝和罗丹明B为模拟废水,对其可见光催化性能进行了研究。结果表明,钛酸和三聚氰胺的物料比对材料的结构和性能有较大影响。当原料中三聚氰胺的量较少时,只得到C和N 掺杂的TiO2 纳米管,不能得到