Microwave-assisted synthesis of graphene/Mn3 O4 composite as electrodes for supercapacitor applicati

来源 :第十一届全国新型炭材料学术研讨会 | 被引量 : 0次 | 上传用户:xuan21456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  A composite material composed of Graphene and Mn3O4 nanoparticles (GM composite) was prepared by microwave-assisted in-situ synthesis of Mn3O4 nanoparticles on the graphene nanosheets.SEM and TEM images showed that Mn2O4 nanoparti-cles with size of 20-50 nm are uniformly distributed on the graphene nanosheets.Compared to the pure Mn3O4,the the excellent contact between the graphene and Mn2O4 nanoparticles helps to decrease the resistance and improve the cycle life of the supercapaci-tor.The GM composite exhibits good electrochemical performance with a maximum specific capacitance of 296.8 F g-1 at the charge/discharge current density of 1 A g-1 with 5 M NaOH as electrolyte and a high energy density up to32.9 W h kg-1 at the power density of 800 W kg-1.After 5000th cycling,a high level retaining specific capacitance of 294.3 F g-1 is obtained which still retained 99.2% of the initial capacity and the equivalent series resistance of the GM composite system is only 0.39 Ω.GM composite shows a large capacity,good cyclicity and reversibility and is promising electrode material for supercapacitor application.
其他文献
采用在空气中燃烧石油渣油的方法制备了一种类富勒烯结构的纳米碳球.进一步氮气气氛下1 000度热处理制得碳化纳米碳球.通过扫描和透射电镜确定了其微观结构.电化学测试结果表明,这两种纳米碳球都有着较高的储锂容量和循环性能,其中经进一步热处理制得的碳化纳米碳球的首次库伦效率和可逆容量更高和电压滞后较小,以及同时大电流密度下的倍率性能更为优良.如此优良的电化学性能主要归功于,此类富勒烯纳米碳球的如此小的粒
为了满足人们对高性能锂离子电池的需求,对电极材料进行结构设计和表面改性非常重要.与其它材料相比,炭材料具有许多独特的物理化学性质:如形貌可控,表面化学可调,热稳定性好,电子导电性好,环境友好,来源广泛及价格低廉等优点.基于炭材料这些独特的优势,使用新型炭负极材料或经过炭材料修饰改性的正负极材料,能够很好地解决锂离子电池正负极材料所面临的困境,从而获得优异的电化学性能.
A novel nitrogen-containing carbon has been prepared by carbonization of polyaniline which is synthesized by in situ polymerization.Lithium storage performances have been investigated by galvanostatic
本文采用聚乙烯醇与活性炭复合,制备活性炭/有机多孔材料,继而经过预氧化及炭化,得到泡沫状多孔炭材料.将其与硫进行复合,作为Li-S电池正极材料.研究表明其具有良好的电化学性能,在100 mA/g的电流密度下,首次放电比容量为1280 mAh/g.同时该电极材料具有良好的倍率性能,循环稳定性和较高的充放电性能.
Green needle coke (GNC) was oxidized by mixing acid HNO3/H2SO4.The resulted oxidized material was named as intermediates which can be easily separated into two parts,water dispersible and water non-di
会议
过在酚醛树脂/聚乙烯醇纺丝原液中加入硅溶胶,经过静电纺丝、固化、炭化和洗涤制备了富含中孔的纳米炭纤维.加入硅溶胶后,纳米炭纤维的中孔含量从3%提高到83%.考察了所得中孔纳米炭纤维的电容性能.结果显示随着中孔含量的提高,炭纤维电极的倍率性能得到明显的改善,这主要归因于中孔的引入有效地提高了离子的传输速率.
本文采用水热法硼磷改性多孔炭,并对其电化学性能进行研究.通过X射线衍射、红外光谱以及氮气吸脱附来表征处理前后多孔炭的结构和性质;将样品用作电化学电容器电极,通过恒流充放电、循环伏安以及交流阻抗测试分析其电化学性能.研究结果表明,水热法硼磷改性使多孔炭的微观结构及组成发生了一定变化,比电容等电化学性能有明显的提高.渗硼剂为氧化硼,渗硼量为15 wt%时,比电容达108.10 F/g,相比原始样增长了
分别采用水热法和化学气相沉积法(CVD),制备两种同粒径(约360 nm)的碳微球(CMSs),并对CVD法制备的CMSs(CCMSs)用混酸溶液(浓硫酸:浓硝酸=3:1)进行酸化处理,在其表面引入含氧官能团,而水热法制备的CMSs(HC-MSs)不作处理;然后分别在N,N’-二环己基碳二亚胺的作用下,用1,6-己二胺修饰两种CMSs.通过场发射扫描电子显微镜和傅里叶红外光谱仪对产物的形貌和结构进
使用穿刺法将聚丙烯腈基炭纤维引入到泡沫石墨/环氧树脂复合材料中.当炭纤维的体积分数为1.O vol%时,复合材料沿纤维轴向的拉伸强度由3.4增高到10.3 MPa;演纤维的径向方向,抗弯强度由23.3增加到31.9 MPa.