【摘 要】
:
粘结钕铁硼是将钕铁硼粉末和粘接剂以及其它添加剂按照一定比例均匀混合,采用模压、注塑、挤压等方法将其制备成具有一定尺寸和形状的磁体.它具有批量生产容易,制造尺寸精确,易成形复杂形状,比重轻,磁性能稳定、可以辐向多极化充磁等优点.但是其不足之处在于磁能级较低,而采用各向异性粘结铁硼制取磁体的磁能级在理论上能比采用各向同性制备磁体能提高3 倍[1],人们对于各向异性粘结钕铁硼的制备工艺发展现状以及其应用
【机 构】
:
湖南航天磁电有限责任公司,长沙 410219
【出 处】
:
第十六届全国磁学和磁性材料会议暨第十七届全国微波磁学会议
论文部分内容阅读
粘结钕铁硼是将钕铁硼粉末和粘接剂以及其它添加剂按照一定比例均匀混合,采用模压、注塑、挤压等方法将其制备成具有一定尺寸和形状的磁体.它具有批量生产容易,制造尺寸精确,易成形复杂形状,比重轻,磁性能稳定、可以辐向多极化充磁等优点.但是其不足之处在于磁能级较低,而采用各向异性粘结铁硼制取磁体的磁能级在理论上能比采用各向同性制备磁体能提高3 倍[1],人们对于各向异性粘结钕铁硼的制备工艺发展现状以及其应用领域颇为关注.
其他文献
近年来,稀土基金属玻璃因其具有的独特电学与磁学结构逐渐引起研究者的关注.根据Sm-Co相图,只有含60-70at %Sm的二元合金存在深共晶区,易于得到非晶,但其矫顽力很小;而含Sm 小于15at %的合金其共晶温度超过了1300℃,很难得到非晶.我们通过在低钐含量的 Sm-Co 合金中添加B 与M元素,用熔体快淬法制备了不同微结构的非晶薄带.
对于纳米复合Nd2Fe14B/α-Fe合金,目前的实验结果与理论值仍有很大的差距,大量研究表明,晶界结构的不完美是限制其性能提高的重要因素之一.直接铸造法由于其工艺简单、一步成型的优势,有望成为新的永磁钕铁硼的成型工艺,但其合金的晶界结构对磁性能的影响目前仍缺乏研究.
纳米复相永磁材料可以综合硬磁相的高矫顽力和软磁相的高饱和磁化强度,并通过硬软相之间的交换耦合作用提高材料的磁能积等综合磁性能,因此在其发展之初即引起人们的广泛关注[1].Sm-Co 系合金具有较高的居里温度和磁晶各向异性,是耦合体系硬磁性相的理想选择;而Fe-Co 合金则具有高的饱和磁化强度,是性能优异的软磁性相.
永磁体的矫顽力远小于理论值,一般认为这是边界缺陷使晶粒表面磁晶各向异性严重降低所造成的,使反磁化的形核场降低[1].但晶粒内部基本没有缺陷,而且反磁化形核是在晶粒内部完成的,因此磁体矫顽力与晶粒表面和内部的耦合密切相关.反磁化过程可分为可逆和不可逆过程,不可逆过程决定了磁体的矫顽力[2,3].热激活源于磁矩客服势垒的不可逆反转,可用于研究磁体的矫顽力.
近年来,纳米复合永磁材料的矫顽力机理研究仍然得到广泛关注[1].由于复合材料的成分和结构较复杂,其反磁化过程和机理还没有完全定论,研究者采用多种研究方法对其讨论.通过真空电弧熔炼和快淬方法制备薄带,所得样品由硬磁性相、软磁性相、及少量非晶相组成,晶粒尺寸在纳米量级.VSM 测量发现磁滞回线具有双相永磁特点,其矫顽力为3.70kOe.
Here,we report a new method to directly prepare L10-FePtAu NPs from solution synthesis.The uniquefeature of this synthesis is that oleylamine (OAm) in the synthesis serves as surfactant,solvent andred
自从Kneller等[1]首次提出交换弹性磁体以来,磁学界及材料科学界的工作者对软硬磁交换耦合纳米材料进行了大量研究.在交换弹性磁体内,具有纳米量级的软、硬磁相,在晶粒边界处出现双相交换相互作用,使高饱和磁化强度的软磁相与高矫顽力的硬磁相实现复合,正是由于这种新型磁体具有独特的复合结构,才能使其获得高性能.虽然人们对这种材料给与了高度关注,但是目前系统地用直流电沉积的方法沉积Sm-Co/Fe-Co
烧结Nd2Fe14B磁铁由于优异的磁性能被广泛使用,但是随着能源的发展,开发低成本的磁体成为研究的热点。本实验室利用价格低廉的轻稀土Ce 元素取代烧结磁体的Nd 元素,利用混粉烧结的方式制备的富Ce 磁体其磁性能达到商用磁体的磁性能。烧结磁体使用的环境对磁体有较大的腐蚀性,且Ce 元素活性强,本文讨论其富Ce 磁体表面垂直于c 轴(per-c)和平行于c 轴(par-c)腐蚀性不同的原因。
近年来,利用稀土资源中的Ce 或MM 代替Nd 和PrNd 来制备稀土永磁体再次引起了关注[1].在制备NdFeB 永磁体过程中所使用的稀土元素主要是Nd 和Pr,它们占轻稀土元素总量的四分之一,这就导致廉价的La(≥25 %)和Ce(≥47 %)使用量非常低,造成La 和Ce的大量堆积.因此为了避免稀土资源的严重浪费,就必须合理的开发利用资源.
在科学实验和工业生产实践中,静磁场用途很多, 如能用NdFeB 替代电磁铁来建立磁场则是个节能环保的选择.我们用多块可在120℃的使用的,体积尽可能的大,磁性能尽可能高的NdFeB磁体,试制成可调静磁场.它的磁极面积为200 × 200 mm2,净重量约为200 kg,利用磁极间距离的变化,来调解磁场的强弱.图1 为可调静磁场的磁场空间几何中心处磁通密度与极面距离关系的曲线,当极面距离为5 mm