层状三元氧化物复合正极材料LiNi0.5Co0.2Mn0.3O2充分综合了 LiCoO2优异的循环性能、 LiMnO2较低的原料成本以及LiNiO2突出的高比容量等优点,是目前极具发展前景的正极材料之一.然而,该材料在长周期循环及大电流密度下的容量衰减严重,极大地制约了其商业化应用[1-3].
The olivine-type LiFeP04 is one of the most promising cathode materials for lithium-ion battery owing to its high operating voltage(~3.4V vs Li/Li+),large theoretical capacity(-170 mA h g-1) and envir
Lithium-ion batteries(LIBs) have attracted increased attention for energy storage development due to the immense demand from portable electronics,(hybrid) electric vehicles and stationary electrical e
LiMnP04(LMP),possessing a moderate working voltage compatible to the present electrolyte systems,can provide a higher energy density than LiFePO4 on account of its higher redox potential of Mn3+/Mn2+(
锂离子电池已经广泛应用在手机,笔记本电脑等移动电子设备.同时锂离子电池具有在电动汽 车和大规模储能装置的应用前景.但是传统锂离子电池正极材料无法满足人们对高比容量,高倍率 性能的电池的需求.因而,钒基氧化物作为高比容量的锂离子电池正极材料成为了研究热点.同时 钒基氧化物展现出其应用于下一代钠离子电池电池的潜力.
With an escalating energy crisis and greenhouse gas emission issue, green energy sources and electric vehicles have received a large amount of attention. High energy and high power rechargeable lithiu
过渡金属氧化物材料在二次电池的电极材料中应用广泛,如正极材料LiMO2,NaMO2,(M=Ni,Co,Mn,Fe,V等),负极材料MOx(M=Ni,Co,Fe).因为梯度材料可集合单个材料的优点,取得优异的综合性能,最近得到研究者的广泛关注[1].在镍钴锰三元材料中,内核高镍,表面高锰或者高铝的材料可以同时取得优异的比容量和循环稳定性.在本文中,离子置换方法被用来构建具有Ni,Mn,以及Al浓度梯
The development of environment-friendly and high energy density cathode materials is highly desired for the clean and sustainable Li-ion batteries(LIBs) system. To take advantage the effect of oxygen-
葡萄糖生物传感器广泛应用于生物发酵、医疗卫生、食品安全等领域,因此葡萄糖生物传感器吸引了许多研究者的关注.酶膜型葡萄糖生物传感器是将酶固定在独立于电极的基体膜上形成酶膜,然后将酶膜固定到工作电极表面就可以进行测试.酶膜型传感器的最大优点是酶膜易于更换,即当酶失去活性时,可以通过快速更换新的酶膜继续进行测试,节省时间并提高工作效率.
We report the design and characterization of a dual-signaling DNA sensor that is based on target hybridization-induced change in the flexibility of surface-immobilized DNA probes.To fabricate this sen