【摘 要】
:
应力对多铁复合异质结中铁磁层的性质起到重要的调控作用,进而影响整个多铁异质结的磁电耦合效应。尖晶石铁氧体薄膜是常用的铁磁层材料,为了更加深入地认识应力对磁电耦合效应的影响,我们对尖晶石铁氧体薄膜的应力调节效应进行了系统研究。
【机 构】
:
天津大学理学院,天津市低维功能材料物理与制备技术重点实验室,天津,300072
论文部分内容阅读
应力对多铁复合异质结中铁磁层的性质起到重要的调控作用,进而影响整个多铁异质结的磁电耦合效应。尖晶石铁氧体薄膜是常用的铁磁层材料,为了更加深入地认识应力对磁电耦合效应的影响,我们对尖晶石铁氧体薄膜的应力调节效应进行了系统研究。
其他文献
Cp* iridium complexes(Cp*=C5Me5-)have recently been shown as effective precatalysts for the oxidation of water to molecular oxygen,which is recognized as the most challenging process in the realizatio
In recent decades,palladium-catalyzed direct arylation with aryl halides had attracted much attention,however,since 2006,the arylations of electron-poor arenes with aryl bromides were developed [1].La
由于含有过渡金属的多金属氧簇在C-H键活化构建C-N键的催化反应中具有重要应用,因此引起了化学家的广泛关注[1],过渡金属修饰的多金属氧簇研究也日益成为多酸化学性能研究的一个热点[2].对于过渡金属Co/Ni-POV的二元体系多金属氧簇尚未见文献报道,我们通过简单的一锅法合成了两个过渡金属修饰的钒多酸:[Co(H2O)5]2V10O28,[Ni(H2O)5]2V10O28.
Gold(Ⅰ)hetero-(NHC)complexes are given much less attention[1] despite the blooming of gold carbene chemistry.In this work,a range of hetero-(NHC)complexes [Au(iPr2-bimy)(NHC)]X(X = BF4 or PF6)have bee
In the past decade,the reactivities of rare-earth metal complexes incorporating different β-diketiminato ligands have been widely investigated.In this abstract,we will report the synthesis of the rare
The coordination chemistry of polynuclear transition metals has attracted considerable current interest because of their unusual structures and catalytic,optical,photochemical,electronic and magnetic
近年来得益于技术以及测量手段的进步自旋电子学得到了长足的发展,其中自旋流的产生于操控吸引了最广泛的研究兴趣。自旋流只能通过有限的手段产生,其中包括自旋霍尔效应[1– 3],非局域自旋阀,自旋泵浦效应[4–6]以及自旋赛贝克效应[10–13]。其中最吸引人的便是自旋赛贝克效应,该效应可以通过加在铁磁绝缘体两端的温度差来产生自旋流,而不需要复杂的光刻过程或者高频激发。当自旋流被注入到邻近的非磁薄膜中,
拥有高的磁导率和共振频率的磁性材料在电子器件当中有很高的需求,如何提高磁性样品的磁导率和共振频率成为一个研究热点.根据Kittel公式1,共振频率依赖于样品的各向异性和饱和磁化强度,提高样品的各向异性就可能提高样品的共振频率.我们通过斜溅射的方法制备CoFeB样品,研究了CoFeB薄膜样品的静态和高频磁学性质.静态和动态的结果表明样品具有很好的面内单轴各向异性,随着斜溅射角度的增加,样品的面内各向
多主元高熵合金具有高强度、高硬度、耐高温蠕变,耐温氧化、耐腐蚀及优异的电、磁性能,是材料科学前沿之一1,2.本工作制备了Al1.25CoCrFeNiSix高熵合金,初步探索非金属Si元素对Al1.25CoCrFeNiSix高熵合金微观组织结构和磁性能的影响.采用真空电熔炼工艺制备不同Si含量的Al1.25CoCrFeNiSix(x=0,0.2,0.4,0.6,0.8)高熵合金,并通过XRD、SEM
近年来,磁性纳米颗粒比如:纳米环/纳米盘等,由于其独特的涡旋畴结构,在生物医学领域的应用引起广泛关注[1-4]。本文借助于微磁学模拟软件OOMMF(object-oriented micro-magnetic framework)[5]及洛仑兹透射电镜(Lorenz TEM),研究了椭球形Fe3O4纳米颗粒(the ellipsoidal magnetite nanoparticles,EMPs)