电化学发光法研究小分子对氯化血红素电催化活性影响

来源 :第十一届全国电分析化学会议 | 被引量 : 0次 | 上传用户:love_day
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  光泽精(lucigenin,LUC),作为一种水溶性的发光试剂,具有较高的发光效 率,量子产率一般在0.01~0.02 之间。由于它可与超氧阴离子自由基、H2O2 和 三线态氧相互作用,所以在生物和医学领域中,光泽精常被用来测定生物体中的 SOD 和作为抗氧化剂来清除超氧阴离子自由基[1-3]。目前,它主要应用于环境分 析、食品分析、药物分析以及生物分析等领域。本实验以光泽精(lucigenin, LUC) 电化学发光为背景,研究了咪唑和组氨酸两种生物小分子与氯化血红素 (hemin,HEM)络合后其对O2 电催化还原活性的影响。
其他文献
重金属(HM)离子-酶相互作用是很多领域的重要研究课题。本文 以葡萄糖氧化酶(GOx)为例,基于石英晶体微天平和电分析技术建立了 定量研究HM 离子-酶相互作用及其酶抑制分析的实验平台。基于酶生 H2O2的阳极安培检测,研究了GOx 在溶液态(GOxs)、吸附态(GOxads) 和聚合物包埋(GOxe)时常见HM 离子的酶抑制效应,发现Ag+抑制效 应明显最强,籍此可高选择性地检测nM 浓度级的A
碳量子点(CQDs)是一种新兴的荧光纳米材料,主要是指尺寸小于10nm的 石墨纳米晶。碳量子点具有许多明显的优点,例如生物兼容性好、毒性小,化学 惰性好、耐光性好等[1],受到越来越多关注。然而,CQDs在电致化学发光(ECL) 方面应用较少报道,其中重要的原因之一是到目前CQDs只能与过硫酸根(S2O8 2-) 形成较理想的共反应物ECL体系,而且该体系的ECL信号相对较弱,灵敏度有待 于进一步
液晶立方相(Liquid-crystalline Cubic Phase)是由极性的油脂与水按照一定比 例混合而成的一类类生物膜,微观上是由直径约5~6 nm的水通道互相交错而形 成的三维立体有序结构。该种液晶相还具有粘性大、稳定性好(可以保存几个月)、 制备简单等优点。从生物电化学的角度来看,这种特殊的结构和性质使得脂质液 晶立方相可作为包埋生物催化剂(蛋白质或酶)的基质,从而在构筑生物电子装
包含F-的电解液的电化学阳极氧化制备Ti02 纳米管已经被系统的研究了。 本文采用了电化学阳极氧化方法在乙二醇体系中添加DMSO 有机溶液来微调 制备Ti02 纳米管,在金属钛基地长出了长径比更大的Ti02 纳米管,并用SEM 对样品进行制备,退火和沉积贵金属Pd,Pt 等进行了表征,并测试了样品的氢 敏性能。研究结果表明,适量的DMSO 电解液对Ti02 纳米管形貌有一个显著的 微调作用,可以明
铜是一些生物体不可或缺的元素,但过量的铜离子(Cu2+)长期存在于环境和生 物体中具有毒性[1]。一般情况下,铜离子在环境中含量比较低,而且存在其他重 金属离子的干扰,因此测定首先要对痕量的铜离子进行分离富集[2]。本文采用循 环伏安法制备了聚铜铁试剂和萘酚/金纳米复合物修饰电极,研究了铜离子在该 修饰电极上的电化学行为,并提出了一种新的用于检测铜离子的方法:将共沉淀 分离富集和电化学测定同时同步
近年来,具有高发光效率的环金属铱化合物引起了广泛的研究兴趣。1与常 用的钌化合物相比,铱化合物的激发态寿命更长,发光效率更高,并且更为灵敏。 因此,铱化合物有望在电化学领域开拓新局面。2之前有一些关于铱环金属化合 物在非水溶液中的电化学发光报道,发现在有机溶液中,比三钌联吡啶具有更强的电化学发光效率。3由于绝大多数的铱化合物只能溶在有机溶剂中,因此,至 今为止,还没有关于水溶液中的铱化合物的电化学
光电生物传感器是以光电效应为基础,将光信号转换为电信号的传感器,具 有响应速度快、检测方便快捷等优点,在实际应用中只需要一个光源和一只电流 计就可以进行检测。
与疾病相关的特定DNA 序列的检测、DNA 碱基突变,尤其是单碱基突变的检测对疾病的早期诊 断和预后监测、基因分型等具有十分重要的意义。虽然现有的DNA 电化学传感技术已经在很多方面 得以发展,但是还是存在各种各样不尽如人意的地方,如DNA 探针的选择性还有待提高;探针的固 定化方法还存在稳定性不高等弊端;标记杂交检测法标记过程繁琐复杂,难以实现自动化;非标记 型的杂交指示剂法虽然简单,但灵敏度不
在吸附分子成膜过程的动力学模式研究中, 在诸如吸附速率常数的测定、吸 附分子浓度对吸附过程定量的研究等方面仍然存在着大量矛盾的结果。 最近, 对不同烷基链长巯基卟啉自组装膜长程电子转移过程动力学进行了系统性的研 究。吸附分子H2TPPO(CH2)nSH 包含有较大的电活性尾式基团-卟啉环, 并经由不 同数目的亚甲基链与金表面进行化学作用。 这种结构的卟啉分子, 有利于我们 对不同链长以及较大尾端基
由于环境污染加剧,微囊藻水华频繁发生,成为国内外普遍关注的环境问 题[1]。微囊藻向水体中释放藻毒素,对人和水生动植物具有很高的毒性及潜在危害, 目前的环境检测已经把其列为其中的一个指标。世界卫生组织规定饮用水中的微 囊藻毒素-LR(MC-LR)浓度不得高于1.0 μg/L[2],因此对于MC 分析检测的研究 对于维护环境安全和人类健康具有重要意义。目前,关于MC的检测和分析方法的研究已经成为一个