论文部分内容阅读
主要研究了Cauchy问题:{ut=Δu+up(x)+uq+ku,(x,t)∈RN×(0,T) u(x,0)=u0(x),x∈R{N的非负解的爆破性质,其中01且初值u0(x)充分大时,解u(x,t)在有限时刻爆破;当max{p+,q}≤1时,解u(x,t)对任意初值u0(x)整体存在;在第4部分,讨论了方程的Fujita指标,并给出了解对任意初值爆破的几种情形.